

VIDYA BHAWAN, BALIKA VIDYAPITH

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

(Affiliated to CBSE up to +2 Level)

Class: X Subject: Mathematics Date: 24.10.2021

02

POLYNOMIALS

19

BASIC CONCEPTS & FORMULAE

- 1. Polynomial: An algebraic expression of the form $a_0x^n + a_1x^{n-1} + a_2x^{n-2} + ... + a_{n-1}x + a_n$, where $a_0, a_1, a_2, ... a_n$ are real numbers, n is a non-negative integer and $a_0 \neq 0$ is called a polynomial of degree n.
- Degree of polynomial: The highest power of variable in a polynomial is called the degree of polynomial.

3. Types of polynomials:

- (i) **Constant Polynomial:** A polynomial p(x) of degree zero is called a constant polynomial and it is of the form p(x) = k.
- (ii) Linear Polynomial: A polynomial of degree one is called linear polynomial and it is of the form p(x) = ax + b, where a, b are real numbers and $a \ne 0$.
- (iii) Quadratic Polynomial: A polynomial of degree two is called quadratic polynomial and it is of the form $p(x) = ax^2 + bx + c$, where a, b, c are real numbers and $a \ne 0$.
- (iv) Cubic Polynomial: A polynomial of degree three is called cubic polynomial and it is of the form $p(x) = ax^3 + bx^2 + cx + d$, where a, b, c, d are real numbers and $a \ne 0$.
- (v) **Bi-quadratic Polynomial:** A polynomial of degree four is called bi-quadratic polynomial and it is of the form $p(x) = ax^4 + bx^3 + cx^2 + dx + e$, where a, b, e, d, e are real numbers and $a \ne 0$.

4. Graph of polynomial:

- (i) Graph of a linear polynomial p(x) = ax + b is a straight line.
- (ii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open upwards like \cup if a > 0
- (iii) Graph of a quadratic polynomial $p(x) = ax^2 + bx + c$ is a parabola open downwards like \cap if a < 0.
- (iv) In general a polynomial p(x) of degree n crosses the x-axis at atmost n points.
- 5. Zeroes of a polynomial: α is said to be zero of a polynomial p(x) if $p(\alpha) = 0$.
 - (i) Geometrically, the zeroes of a polynomial p(x) are the x-co-ordinates of the points, where the graph of y = p(x) intersects the x-axis.
 - (ii) A polynomial of degree 'n' can have atmost n zeros.
 That is a quadratic polynomial can have atmost 2 zeroes and a cubic polynomial.
 - That is a quadratic polynomial can have atmost 2 zeroes and a cubic polynomial can have atmost 3 zeroes.
 - (iii) 0 may a zero of a polynomial.
 - (iv) A non-zero constant polynomial have no zeroes.

Discriminant of a quadratic polynomial: For polynomial $p(x) = ax^2 + bx + c$, $a \ne 0$, the expression $b^2 - 4ac$ is known as its discriminant 'D'.

 $D = b^2 - 4ac$

- Relationship between the zeroes and the coefficients of a polynomial:
 - (i) If α , β are zeros of $p(x) = ax^2 + bx + c$, then Sum of zeros = $\alpha + \beta = \frac{-b}{a} = \frac{-(\text{Coefficient of } x)}{\text{Coefficient of } x^2}$

Product of zeros = $\alpha \beta = \frac{c}{a} = \frac{\text{Constant term}}{\text{Coefficient of } x^2}$

(ii) If α , β , γ are zeros of $p(x) = ax^2 + bx + cx + d$, then

$$\alpha + \beta + \gamma = \frac{-b}{a} = \frac{-(\text{Coefficient of } x^2)}{\text{Coefficient of } x^3}$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a} = \frac{\text{Coefficient of } x}{\text{Coefficient of } x^3}$$

$$\alpha\beta\gamma = \frac{-d}{a} = \frac{-(\text{Constant term})}{\text{Coefficient of } x^3}$$

(iii) If α , β , are roots of a quadratic polynomial p(x), then $\Rightarrow p(x) = x^2 - (\alpha + \beta)x + \alpha\beta$ $p(x) = x^2 - (\text{sum of zeroes})x + \text{product of zeroes}$

(iv) If α , β , γ are the roots of a cubic polynomial p(x), then $p(x) = x^3 - \text{(sum of zeroes)} x^2 + \text{(sum of product of zeroes taken two at a time)} x$ - product of zeroes

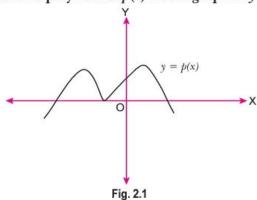
 $\Rightarrow p(x) = x^3 - (\alpha + \beta + \gamma)x^2 + (\alpha\beta + \beta\gamma + \gamma\alpha)x - \alpha\beta\gamma$

MULTIPLE CHOICE QUESTIONS

Choose and write the correct option in the following questions.

1. The zeroes of the polynomial $x^2 - 3x - m(m + 3)$ are

[CBSE 2020 (30/2/1)]

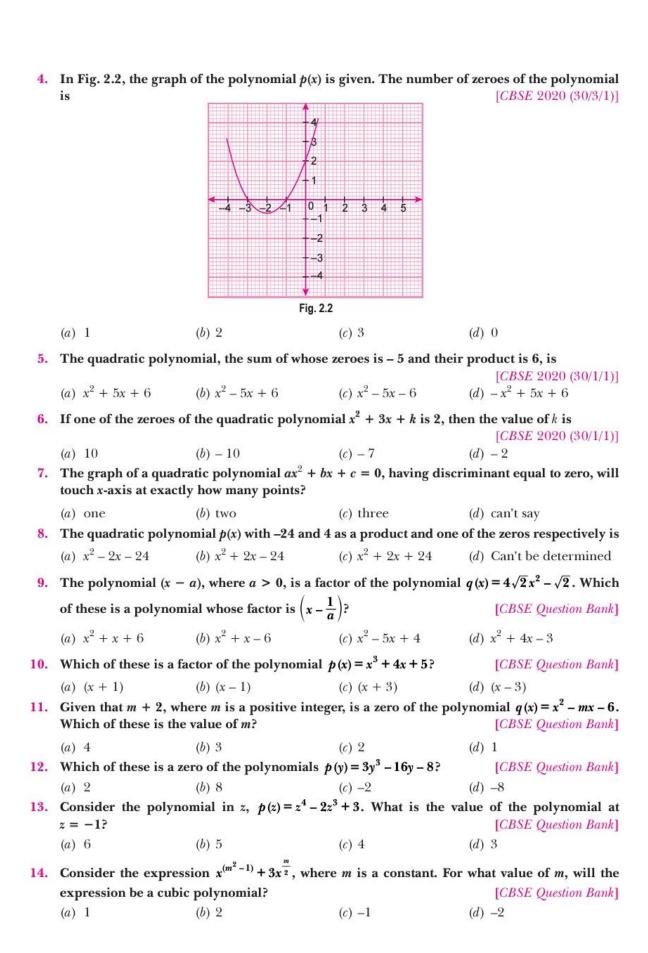

- (a) m, m + 3
- (b) -m, m + 3
- (c) m, -(m+3) (d) -m, -(m+3)
- The degree of polynomial having zeroes 3 and 4 only is

[CBSE 2020 (30/5/2)]

- (a) 2

- (c) more than 3
- (d) 3
- The number of zeroes for a polynomial p(x) where graph of y = p(x) given in Fig. 2.1, is

[CBSE 2020 (30/4/1)]



(a) 3

(b) 4

(c) 0

(d) 5

